

# TM-045 Plasma WGS Sciclone Library Preparation - KAPA Plasma WGS Sciclone Library Preparation - KAPA

### Purpose

To describe the KAPA Hyper Prep Kit Plasma Whole Genome Sequencing (pWGS) library preparation procedure using the Sciclone G3 liquid handler.

### Scope

This Standard Operating Procedure (SOP) covers the entire procedure for creating plasma WGS libraries on the Sciclone G3 liquid handler using the KAPA Hyper Prep kit. It includes QC steps, and LIMS entry. The final result is a library that consists of DNA fragments with ligated adapters and indices which can be sequenced on an Illumina instrument.

This SOP applies to all staff who perform plasma WGS library preparation on the Sciclone G3 platform.

For document control and training purposes, the specific methods and reagents required to complete some steps of this assay are described in detail in separate TMs which are listed in this document and available on the <u>Quality Management SharePoint</u>. Only personnel with specific, up-to-date training are permitted to perform any validated assay.

# Responsibilities

Laboratory Staff:

Follow the SOP, document all required metrics, and report any non-conformances that may occur

<u>QA Manager</u>: Monitor quality output from this procedure

Management: Review and update procedure, as required Approve data at appropriate sign-off points Communicate progress to the customer, as required

# **Reagents and Consumables**

Note: Plastic consumables cannot be substituted for another product

Version: 1.0 Page **1** of **17** This SOP has been approved for use by the OICR Genomics Medical Director.

| Item Description                                                                                                | Vendor                         | Catalogue #                    |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------|
| NA12878 DNA from LCL (gDNA positive control);<br>GLCS_0002                                                      | Coriell                        | NA12878                        |
| Seraseq <sup>®</sup> Blood TMB Mix Score 7 (positive control) ; GLCS_0035                                       | SeraCare                       | SER-0710-2087                  |
| KAPA Hyper Prep Kit                                                                                             | Roche                          | 7962363001                     |
| NucleoMag <sup>®</sup> NGS Clean-up and Size Select beads                                                       | Macherey-Nagel                 | 744970                         |
| or AMPure XP Beads                                                                                              | Beckman                        | A36881 (60 ml)                 |
| 100% Ethanol                                                                                                    | Sigma-Aldrich                  | E7023                          |
| 1X Low TE Buffer (10 mM Tris-HCl (pH 8.0), 0.1<br>mM EDTA                                                       | Life Technologies              | 12090-015                      |
| xGen Duplex Seq Adapter-Tech Access; 2nmol at 15uM, dual 3bp UMI; approximately 133.3ul (stock solution); -20°C | Integrated DNA<br>Technologies | 1080799                        |
| IDT Dual Index (IDT unique indexing primer pool 20uM)                                                           |                                | custom with standard desalting |
| Hard-Shell <sup>®</sup> 96-Well PCR Plates                                                                      | Bio-Rad Laboratories           | HSP9601                        |
| 150 μL - Barrier Sterile 96 Rack Tips                                                                           | Perkin Elmer                   | 111426                         |
| Polypropylene 12 column reservoir plate                                                                         |                                | 6008700                        |
| StorPlate-96-well V-bottom plate, 450µL                                                                         |                                | 6008290                        |
| Clear Lid                                                                                                       |                                | 6005619                        |
| Polypropylene low-volume microplate, 384-well                                                                   |                                | 6008890                        |
| 96 microTUBE Plate                                                                                              | Covaris                        | 520078                         |
| microTUBE-50 AFA Fiber Screw-cap                                                                                |                                | 520166                         |
| High Sensitivity NGS Fragment Analysis Kit                                                                      | Agilent                        | DNF-474                        |
| TapeStation High Sensitivity D1000 ScreenTape                                                                   |                                | 5067-5584                      |

| TapeStation High Sensitivity D1000 Reagents |              | 5067-5585 |
|---------------------------------------------|--------------|-----------|
| TapeStation High Sensitivity D1000 Ladder   |              | 5067-5587 |
| Qubit dsDNA HS Assay                        | ThermoFisher | Q32854    |
| Ambion Nuclease-free Water                  |              | AM9937    |

# Equipment

| Item Description                            | Vendor       | Catalogue #                          |
|---------------------------------------------|--------------|--------------------------------------|
| Sciclone G3                                 | Perkin Elmer | SG3-11020-0100/B<br>SG3-31020-0300/E |
| Centrifuge                                  | Eppendorf    | Various                              |
| QubitFlex Fluorometer                       | ThermoFisher | Q33327                               |
| TapeStation 4200                            | Agilent      | G2991A                               |
| Fragment Analyzer Automated CE System 48/96 |              | FSv2-CE10F                           |
| c1000 Thermocycler                          | Bio-Rad      | 1841100                              |

# Sample Requirements

1. 10-20ng of cfDNA sample is diluted in a total of  $50\mu$ L of low TE buffer and used for library preparation.

Minimum batch size is 14 samples, but less may be run at the discretion of a manager. Maximum batch size is 88 samples.

**Note:** the validated input range is 10-50 ng. The default input is listed above, however, Management may specify a different input within this range as required.

# Sample Transfer

- 1. Samples are received in a 96-well plate.
- 2. Wells G03, H03, G06, H06, G09, H09, G12, H12 are always empty. They are reserved for positive and no template controls.
- 3. Each occupied well has  $50\mu$ L of cfDNA at a minimum of 0.2ng/ $\mu$ L.

# **Positive Control Requirements**

- 1. Dilute 20 ng of Positive control (GLCS\_0002 or GLCS\_0035) in 10 mM Tris pH 8.0-8.5 to a final volume of 50 μl.
- 2. Transfer samples to Covaris microTUBE-50 AFA tube through septum (Spin down briefly; ensure there are no bubbles around fiber prior to shearing). Load the tube into the sonication chamber.
- 3. Run protocol: 50ul\_shear\_150bp (Peak Incident Power: 75; Duty factor: 10%; Cycles/Burst: 200; Treatment Time: 360 seconds; Temp 20°C).
- 4. Briefly spin microtube containing sheared DNA, twist off cap and transfer.

# **Batch Controls**

At least one pair of no template (NTC) and positive DNA controls must be included for every quadrant. A plate has 4 quadrants: Column 1-3, 4-6, 7-9 and 10-12 (inclusive). DNA positive controls GLCS\_0002 (NA12878) and GLCS\_0035 (TMB Mix score 7) are purchased from the Coriell Institute and SeraCare respectively. Control libraries are not sequenced but are included in <u>each</u> library synthesis batch and recorded in a MISO batch within the respective MISO project(s). Control libraries must be synthesized at the same time as a production library batch.

### **Control Distribution**

Maximum sample capacity of the plate is 88 samples. In a full plate, 8 wells must be allocated to controls. In a full plate of 88 samples, every quadrant must end with a pair of controls, 1 positive and 1 negative control, for a total of 4 pairs of controls (**Figure 1**).

For partial plates, a pair of controls must be allocated closest to the final sample in the plate, while ensuring one pair of controls within each quadrant (**Figure 2**).

### Pass/Fail Guidelines

QC standards are defined in QM. Quality Control and Calibration Procedures.

Pass: If the controls within quadrant meet QC standards, that quadrant of samples are considered a 'pass'

Fail: If the controls within a quadrant do not meet QC standards, that quadrant of samples are considered a 'fail'

In the case of Figure 2, if the controls on column 3 meet QC standards, but the controls on column 4 don't, then samples within the 1<sup>st</sup> quadrant pass while samples in the 2<sup>nd</sup> quadrant (column 4) fail.



Figure 1: Full plate capacity with 88 samples and 4 pairs of controls



Figure 2: Example of partial plate with 25 samples and 2 pairs of controls

# Variables and Observations to Record

The following library information is recorded and logged in MISO for <u>all</u> libraries.

TM-045 Version: 1.0 Page **5** of **17** This SOP has been approved for use by the OICR Genomics Medical Director.

- KAPA, IDT, index and other reagent lots
- Index used
- Quantity of input DNA (ng)
- Qubit quantification (ng/µl) of library
- % Adapter contamination
- Library size (bp) (Tapestation)

### **Important Considerations**

Ensure that the following are used

- IDT xGen UMI Adapters
- IDT Dual Index (custom order, no cat#)
- Number of Library Amplification cycles (12).
- Use freshly-prepared 80% ethanol.

#### **Reagent Lots and Expiration**

- Prior to starting an assay, inspect reagents to ensure that they have not expired.
- Lot numbers for critical reagents must be recorded in MISO.

# **Recovering from Sciclone Errors**

Errors listed below can be fixed and then the application can be continued. If the error is not listed below, follow the Emergency Response Procedure detailed in <u>Sciclone G3 Operation SOP</u>

### 1. Initial lid movement error

If the first two lid movements fail to place the lid correctly, pause application, manually correct the lid placement, and resume the application.

### 2. Util\_UpdateConsumables error

This is an inconsistent and uncommon error that may randomly occur during a run. This occurs before any pipetting is done, so it is safe to click 'Retry action' to continue the application.

### Procedure

### **Preparing Reagents Plates Ahead of Time**

- 1. AMPure XP beads and low TE buffer used in the Sciclone library preparation can be aliquoted in plates ahead of time and stored at 4°C for at most 1 month.
- Volumes and which plates to use are specified in the Sciclone spreadsheet (C:\ProgramData\CaliperLS\Maestro\Workbooks\KAPA HyperPrep Plasma WG.xls).
- Thaw the following reagents:
  - AMPure XP Beads plate at room temperature.
  - 1X Low TE Buffer plate at room temperature.
  - IDT xGen UMI Adapters on ice.

TM-045 Version: 1.0 Page **6** of **17** This SOP has been approved for use by the OICR Genomics Medical Director. • IDT Dual Index plate on ice.

### **Reagent Volumes**

Volume used for one well. Extra volume may have been used to account for pipetting loss.

#### Library Prep

| Reagent                           | Volume<br>(μL) | Comment                                                                                 |
|-----------------------------------|----------------|-----------------------------------------------------------------------------------------|
| End Repair + A-Tail Master<br>mix | 16             | 11.8 μL 10X KAPA End Repair/A-Tailing Buffer<br>5.0 μL KAPA End Repair/A-Tailing Enzyme |
| Ligation Master mix               | 51             | 35.5 μL KAPA Ligation Buffer<br>11.9 μL DNA Ligase<br>5.9 μL PCR Grade Water            |
| KAPA HiFi HotStart ReadyMix       | 28             |                                                                                         |
| Low TE Buffer                     | 35             |                                                                                         |
| AMPure XP Beads                   | 110            |                                                                                         |
| IDT xGen UMI Adapters             | 7              |                                                                                         |
| IDT Dual Index                    | 5              |                                                                                         |

#### Library Bead Cleanup

| Reagent         | Volume (µL) | Comment |
|-----------------|-------------|---------|
| AMPure XP Beads | 65          |         |
| Low TE Buffer   | 35          |         |

### Library Preparation on Sciclone

Sciclone startup is described in detail in the <u>Sciclone G3 Operation SOP</u>, located on the Genomics Quality SharePoint.

1. Wipe down the inside of the machine with 70% ethanol. Do not clean the gantry, gripper or main array.

- 2. Turn on the Sciclone using the power switch on the left-hand side of the Sciclone. Ensure two green indicator lights on the upper left of the machine are on.
- 3. Turn on the INHECO Control Unit using the power switch on the back.
- 4. Open 'Maestro Workstation' on desktop.
- 5. Go to 'File'  $\rightarrow$  'Open Application'. All validated protocols will be in the PRODUCTION folder.
- 6. Open Application at **PRODUCTION\Kapa HyperPrep Plasma WG\1\_Library\_Prep\_2022-08-25** and click the execution button ►.
- 7. Lubricate the O-rings as instructed by the prompt. Press **OK** once completed.



8. The application setup window will open. Ensure default options are selected before clicking **OK** as shown below:

| Sample Setup                                                                                                                                                                              | $\times$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul> <li>Fragmentation Options</li> <li>Fragmentation is done by Covaris, proceed with KAPA HyperPrep.</li> <li>Use enzymatic Fragmentation and proceed with KAPA HyperPrep+</li> </ul>   |          |
| Post-Ligation SPRI Clean up Options                                                                                                                                                       |          |
| Adapter Options <ul> <li>Adapters are pre-arrayed in a 96-well BioRad plate.</li> <li>Adapters are in the reagent plate and the Sciclone will array into Q1 of 384 well plate.</li> </ul> |          |
| VaporLock Options <ul> <li>Use Vapor Lock and incubate End Repair on the Sciclone.</li> <li>Do NOT use Vapor Lock and prompt for thermocycler incubation for End Repair.</li> </ul>       |          |
| OK Cance                                                                                                                                                                                  | 1        |

TM-045 Version: 1.0 Page **8** of **17** This SOP has been approved for use by the OICR Genomics Medical Director.

- 9. Wait for the Dialog box. Click OK after following instructions: "The Excel workbook has opened. Select the "*KapaHyperPrep Plasma WG*" sheet and enter the number of columns to process in the "*Number of Columns*" field. Save the Excel workbook. Click OK on this window."
  - a. If Excel does not open, manually open the file at:

C:\ProgramData\CaliperLS\Maestro\Workbooks\KAPA HyperPrep Plasma WG.xls

- 10. If reagent plates were prepared ahead of time, take out and thaw as described below. If not, take out reagents specified in Excel sheet and thaw as described in the 'Preparing Reagent Plates Ahead of Time' section. Aliquot reagents to plates specified in Excel sheet.
- 11. Press **Continue** after confirming '*Number of Columns*' is correct.

| Sample Info | ormation                                   |
|-------------|--------------------------------------------|
|             | Please confirm the following information:  |
| Folder:     | C:\ProgramData\CaliperLS\Maestro\Workbooks |
| WorkBook:   | KAPA HyperPrep Plasma WG.xds               |
| Date Modif  | fied:                                      |
| Number of   | Samples                                    |
| Number of   | Columns: 1                                 |
| Number of   | Rows: 8                                    |
| Total Numb  | ber of Samples to Process:8                |
|             | Continue Cancel                            |

#### 12. Ensure CPACs and Magnet match the picture displayed by Sciclone. Press Finish.

| 🖳 Application: KAPA Hyper Prep                                                                                                                                                                                                   | 77 <u>—</u> 85 |       | ×   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-----|
| KAPA Hyper Prep                                                                                                                                                                                                                  |                |       |     |
| Description                                                                                                                                                                                                                      | Ste            | ep: 1 |     |
| Please match initial bare deck layout to match this picture.<br>Place the following adapters and accessories on the deck:<br>A3 - 384 Well adapter<br>A4 - 96 well adapter<br>D2 - 96 Well adapter<br>B4 - Magnet with no spacer |                |       |     |
|                                                                                                                                                                                                                                  |                |       | ~   |
|                                                                                                                                                                                                                                  |                |       |     |
| Abort < Previous Next >                                                                                                                                                                                                          |                | Fin   | ish |

- 13. Press **OK** on the "Ready to Start Run?" dialog box.
- 14. Follow instructions for deck setup, using volumes specified in the open Excel sheet. Pull each plate to the top left (A1) position. Press the Next > button to proceed. Once the last picture is reached (see below), ensure the physical deck matches the displayed picture.



15. Ensure that lids are cleaned with 70% EtOH prior to placing them on plates.

< Previous

Next >

Finish

- 16. Ensure that columns 0 and 1 contain full tip boxes (no lids).
- 17. Press the **Finish** button to continue the application.

Abort

18. Press the **Yes** button to continue. The Sciclone will start manipulating the deck.

| Finished            | $\times$ |
|---------------------|----------|
| Ready to Start Run? |          |
| Yes No              |          |

- 19. Follow the instructions of the Dialog Box when it opens: "1. Remove plate from location D4, seal carefully and place on thermocycler and run the CAP WG ER AT. 2. Click OK NOW to pre-broadcast Ligation Mix while the thermocycler runs."
  - a. Program Name: CAP WG ER AT
  - b. Reaction Volume: 60 µL
  - c. Cover Temperature: 85 °C
- 20. A dialog Box will open with "Please wait for the End Repair A-Tail incubation to finish. When complete, spin down plate, remove seal and place plate on location B4. NO LID!" Follow instructions and click OK.
- 21. A dialog box will open with "Please place pre-arrayed UMI adapter plate at location D2 with LID". Follow instructions and click OK.

**Note:** The Sciclone will proceed to perform the 2-hour ligation incubation at 20 °C on deck. On completion, it will immediately proceed to the post-ligation clean-up. During this clean-up the operator will be required to address the following prompts for additional reagent plates:

- a. A dialog box will open with "Please place pre-arrayed unique dual index primers at deck location D2 WITHOUT LID". Follow instructions and click OK.
- b. A dialog box will open with "Remove and seal the PCR plate from D2. Centrifuge briefly and then run PCR enrichment program on thermocycler. Click OK to continue power down". Follow instructions and click OK.
- 22. Run the following program on the thermocycler:
  - a. Program Name: CAP WG PCR Amplification
  - b. Reaction Volume: 50 µL

| Step | Temperature (°C) | Time   | Cycles |
|------|------------------|--------|--------|
| 1    | 98               | 45 sec | 1      |
| 2    | 98               | 15 sec | 11     |
| 3    | 60               | 30 sec |        |
| 4    | 72               | 30 sec |        |
| 5    | 72               | 60 sec | 1      |

c. Cover Temperature: 105°C

| 6 | 4 | Hold | 1 |
|---|---|------|---|
|---|---|------|---|

- 23. Visually check the PCR reaction plate volumes and make note of any discrepancies.
- 24. The application has finished. While the PCR is running, start the application at **PRODUCTION\Kapa HyperPrep Plasma WG\2\_Bead\_Cleanup\_2022-08-25** as described in the Sciclone Operation SOP.
- 25. Wait for the dialog box. Click OK after following instructions: "The Excel workbook has opened. Select the "KAPA Post-PCR SPRI" sheet and enter the number of columns to process in the "Number of Columns" field. Save the Excel workbook. Click OK on this window."
  - a. If Excel does not open, manually open the file at:
- C:\ProgramData\CaliperLS\Maestro\Workbooks\KAPA HyperPrep Plasma WG.xls 26. Press **OK** after confirming "*Number of Columns*" is correct.

| Reagent Plates and Sample Information                                                                                                                                                            | $\times$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Please confirm the following information:                                                                                                                                                        |          |
| Number of Samples Number of Columns: 1 Number of Rows: 8 Total Number of Samples to Process:8                                                                                                    |          |
| Reagents         Sciclone Deck: C2         Sciclone Deck: C4         Reagent Plate Name:         Post-PCR AMPureXP Bead Plate (Bio-Rad Hard Shell 96)         Sciclone Deck Location:         C2 | 5        |
| OK Cancel F                                                                                                                                                                                      | Run      |

27. Follow instructions for deck setup, using volumes specified in the open Excel sheet.
 Press the Next > button to proceed. Once the last picture is reached (see below), ensure the physical deck matches the displayed picture.

– 🗆 X





- 28. Ensure that lids are cleaned with 70% EtOH prior to placing them on plates.
- 29. Ensure each plate is pulled to the top left (A1 position) and positioned correctly.
- 30. Ensure that columns 0 and 1 contain full tip boxes (no lids).
- 31. Press the **Finish** button to continue the application.

32. Press the **Yes** button to continue. The Sciclone will start manipulating the deck.



- 33. Once the bead clean-up is complete, the dialog box will show "Run complete. Remove the purified DNA sample plate from the shaker at D4 and store at -20°C." Store at -20°C or proceed to Library Quantity and Quality Assessment.
- 34. Press **OK** on the dialog box to finish up the application.
- 35. Go to 'Head Position' on the left control panel and move the gantry to deck location 'D5'.
- 36. Close 'Maestro Workstation'. Do not save any changes if prompted.
- 37. Turn off the Sciclone with the left side switch.
- 38. Turn off the INHECO Control Unit using the switch on the back. Note: Sciclone shutdown is described in detail in the <u>Sciclone G3 Operation SOP</u>, located on the Genomics Quality SharePoint.

# Library Quantity and Quality Assessment

**Plan Ahead**: Thaw Qubit standards and Fragment Analyzer/TapeStation reagents to room temperature

- 1. Assess the library quantity by following <u>TM. Genomics Qubit Fluorometric</u> <u>Quantification</u>.
  - a. Dilute libraries 1:5 before quantification as Qubit has an upper maximum of 120  $ng/\mu L$
- 2. Assess library quality using the Fragment Analyzer or TapeStation
  - a. Dilute libraries to 5 ng/ $\mu$ L using <u>TM. Sciclone Aliquotting Procedure</u>.
  - b. Refer to the <u>TM. Fragment Analyzer Assays</u> SOP or <u>TM. High Sensitivity</u> <u>TapeStation Assay</u>, located on the Genomics Quality SharePoint.
- 3. Store plate at -20°C.

# **LIMS Entries**

- 1. For general MISO instruction and training, see <u>TM. LIMS Usage MISO</u>.
- Propagate all MISO libraries from their gDNA Aliquots in the box. Check 'Create New Box' and provide all details, including the barcode using a scanner. Enter the following information for each Library:
  - Box Position: Set to 'Match parent positions'
  - Creation Date: Defaults to current date, but set to date of library creation
  - SOP: Set to "Plasma WGS Library Preparation- KAPA" (see version at the footer of SOP)
  - Thermal Cycler: Set to name of thermal cycler used

TM-045 Version: 1.0 Page **15** of **17** This SOP has been approved for use by the OICR Genomics Medical Director.

- Design: "PG"
- Platform: "Illumina"
- Type: "Paired End"
- Index Kit: "GRP TGL Dual Index UD Set 1 or 2"
- Index 1: Set to "index used for the library. Will autofill Index 2
- Has UMIs: "True"
- Kit: "KAPA Hyper Prep"
- Kit Lot: The lot number of the KAPA Hyper Prep Kit
- QC Passed: See Library Quality Assessment for criteria
- Size (bp): Determined during Library Quality Assessment
- Volume: Set to 28  $\mu L$ , unless elution volume was less than expected o Elution volume is 30  $\mu L$ , but 2  $\mu L$  are used for QC
- Concentration Determined during Library Quality Assessment
- GroupID: Do not enter a groupID unless you are certain that it is required (e.g. for re-validation).
- 3. Propagate Library Aliquot. Prepare at least a 15  $\mu$ L aliquot at 5 ng/ $\mu$ L of the stock library and propagate a matching MISO Library Aliquot from the MISO Library. Check "Create New Box" and provide all details, including the barcode using a scanner.
  - Box Position: Match parent positions here
  - QC Passed: "True"
  - Conc. 5 ng/µL
  - Volume: As prepared (μL)
  - Parent ng Used: Record the amount of stock library used to create the dilution
  - $\bullet$  Parent Vol. Used: Record the volume ( $\mu L$ ) of stock library used to create the dilution
  - GroupID: Do not enter a groupID unless you are certain it is required (e.g. for revalidation).
  - Creation Date: Defaults to current date, but set to date of dilution/aliquot creation
  - Prior to saving Libraries, check that all information is correct, and that the MISO entry matches the LIMs tracking sheet
- 4. Attach batch QC files to all stock libraries that were prepared during the same library synthesis batch:
  - Select all stock libraries prepared together in the same batch
  - Select Attach Files: Upload New Files
  - Choose files and pick the corresponding file "Category":
    - $\circ \quad \text{Qubit csv file} \\$
    - Fragment Analyzer/TapeStation traces PDF
  - Only one file can be uploaded at a time
  - Repeat previous steps both QC files have been uploaded.
- 5. After all QC has been entered and the appropriate files have been uploaded Library aliquot plate can be passed to GRP as follows for sequencing:

- a. Move the Library aliquot plate in the Freezer Tortuga, Shelf 2, Loose Storage 1 and update the locations in MISO.
- b. Add the LDI for every sample passed on for sequencing into the Workset- <u>GRP</u> <u>MiSeq QC Queue (For CAP-stream NovaSeq 2x151)</u> in MISO.
- c. Send an email to <u>GenomicsLibrarySubmissions@oicr.on.ca</u> with the Library Aliquot Plate ID to alert the sequencing team that there are libraries pending sequencing.